(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: RunningPointers
public class ObjectList {
Object value;
ObjectList next;

public ObjectList(Object value, ObjectList next) {
this.value = value;
this.next = next;
}

public static ObjectList createList() {
ObjectList result = null;
int length = Random.random();
while (length > 0) {
result = new ObjectList(new Object(), result);
length--;
}
return result;
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


/**
* Allegedly based on an interview question at Microsoft.
*/
public class RunningPointers {

public static boolean isCyclic(ObjectList l) {
if (l == null) {
return false;
}
ObjectList l1, l2;
l1 = l;
l2 = l.next;
while (l2 != null && l1 != l2) {
l2 = l2.next;
if (l2 == null) {
return false;
}
else if (l2 == l1) {
return true;
}
else {
l2 = l2.next;
}
l1 = l1.next;
}
return l2 != null;
}

public static void main(String[] args) {
Random.args = args;
ObjectList list = ObjectList.createList();
isCyclic(list);
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
RunningPointers.main([Ljava/lang/String;)V: Graph of 134 nodes with 1 SCC.

ObjectList.createList()LObjectList;: Graph of 97 nodes with 1 SCC.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 23 rules for P and 3 rules for R.


Combined rules. Obtained 1 rules for P and 1 rules for R.


Filtered ground terms:


325_0_createList_LE(x1, x2, x3) → 325_0_createList_LE(x2, x3)
Cond_325_0_createList_LE(x1, x2, x3, x4) → Cond_325_0_createList_LE(x1, x3, x4)
333_0_createList_Return(x1) → 333_0_createList_Return

Filtered duplicate args:


325_0_createList_LE(x1, x2) → 325_0_createList_LE(x2)
Cond_325_0_createList_LE(x1, x2, x3) → Cond_325_0_createList_LE(x1, x3)

Combined rules. Obtained 1 rules for P and 1 rules for R.


Finished conversion. Obtained 1 rules for P and 1 rules for R. System has predefined symbols.




Log for SCC 1:

Generated 33 rules for P and 66 rules for R.


Combined rules. Obtained 2 rules for P and 0 rules for R.


Filtered ground terms:


ObjectList(x1, x2) → ObjectList(x2)
1055_0_isCyclic_NULL(x1, x2, x3, x4) → 1055_0_isCyclic_NULL(x2, x3, x4)

Filtered duplicate args:


1055_0_isCyclic_NULL(x1, x2, x3) → 1055_0_isCyclic_NULL(x1, x3)

Finished conversion. Obtained 2 rules for P and 0 rules for R. System has no predefined symbols.


(4) Complex Obligation (AND)

(5) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
325_0_createList_LE(0) → 333_0_createList_Return

The integer pair graph contains the following rules and edges:
(0): 325_0_CREATELIST_LE(x0[0]) → COND_325_0_CREATELIST_LE(x0[0] > 0, x0[0])
(1): COND_325_0_CREATELIST_LE(TRUE, x0[1]) → 325_0_CREATELIST_LE(x0[1] + -1)

(0) -> (1), if ((x0[0] > 0* TRUE)∧(x0[0]* x0[1]))


(1) -> (0), if ((x0[1] + -1* x0[0]))



The set Q consists of the following terms:
325_0_createList_LE(0)

(6) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 325_0_CREATELIST_LE(x0) → COND_325_0_CREATELIST_LE(>(x0, 0), x0) the following chains were created:
  • We consider the chain 325_0_CREATELIST_LE(x0[0]) → COND_325_0_CREATELIST_LE(>(x0[0], 0), x0[0]), COND_325_0_CREATELIST_LE(TRUE, x0[1]) → 325_0_CREATELIST_LE(+(x0[1], -1)) which results in the following constraint:

    (1)    (>(x0[0], 0)=TRUEx0[0]=x0[1]325_0_CREATELIST_LE(x0[0])≥NonInfC∧325_0_CREATELIST_LE(x0[0])≥COND_325_0_CREATELIST_LE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_325_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥))



    We simplified constraint (1) using rule (IV) which results in the following new constraint:

    (2)    (>(x0[0], 0)=TRUE325_0_CREATELIST_LE(x0[0])≥NonInfC∧325_0_CREATELIST_LE(x0[0])≥COND_325_0_CREATELIST_LE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_325_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_325_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_10] + [(2)bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_325_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_10] + [(2)bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_325_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_10] + [(2)bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0 ⇒ (UIncreasing(COND_325_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_10 + (2)bni_10] + [(2)bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)







For Pair COND_325_0_CREATELIST_LE(TRUE, x0) → 325_0_CREATELIST_LE(+(x0, -1)) the following chains were created:
  • We consider the chain COND_325_0_CREATELIST_LE(TRUE, x0[1]) → 325_0_CREATELIST_LE(+(x0[1], -1)) which results in the following constraint:

    (7)    (COND_325_0_CREATELIST_LE(TRUE, x0[1])≥NonInfC∧COND_325_0_CREATELIST_LE(TRUE, x0[1])≥325_0_CREATELIST_LE(+(x0[1], -1))∧(UIncreasing(325_0_CREATELIST_LE(+(x0[1], -1))), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    ((UIncreasing(325_0_CREATELIST_LE(+(x0[1], -1))), ≥)∧[2 + (-1)bso_13] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    ((UIncreasing(325_0_CREATELIST_LE(+(x0[1], -1))), ≥)∧[2 + (-1)bso_13] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    ((UIncreasing(325_0_CREATELIST_LE(+(x0[1], -1))), ≥)∧[2 + (-1)bso_13] ≥ 0)



    We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (11)    ((UIncreasing(325_0_CREATELIST_LE(+(x0[1], -1))), ≥)∧0 = 0∧[2 + (-1)bso_13] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 325_0_CREATELIST_LE(x0) → COND_325_0_CREATELIST_LE(>(x0, 0), x0)
    • (x0[0] ≥ 0 ⇒ (UIncreasing(COND_325_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_10 + (2)bni_10] + [(2)bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)

  • COND_325_0_CREATELIST_LE(TRUE, x0) → 325_0_CREATELIST_LE(+(x0, -1))
    • ((UIncreasing(325_0_CREATELIST_LE(+(x0[1], -1))), ≥)∧0 = 0∧[2 + (-1)bso_13] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(325_0_createList_LE(x1)) = [-1]   
POL(0) = 0   
POL(333_0_createList_Return) = [-1]   
POL(325_0_CREATELIST_LE(x1)) = [2]x1   
POL(COND_325_0_CREATELIST_LE(x1, x2)) = [2]x2   
POL(>(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   

The following pairs are in P>:

COND_325_0_CREATELIST_LE(TRUE, x0[1]) → 325_0_CREATELIST_LE(+(x0[1], -1))

The following pairs are in Pbound:

325_0_CREATELIST_LE(x0[0]) → COND_325_0_CREATELIST_LE(>(x0[0], 0), x0[0])

The following pairs are in P:

325_0_CREATELIST_LE(x0[0]) → COND_325_0_CREATELIST_LE(>(x0[0], 0), x0[0])

There are no usable rules.

(7) Complex Obligation (AND)

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
325_0_createList_LE(0) → 333_0_createList_Return

The integer pair graph contains the following rules and edges:
(0): 325_0_CREATELIST_LE(x0[0]) → COND_325_0_CREATELIST_LE(x0[0] > 0, x0[0])


The set Q consists of the following terms:
325_0_createList_LE(0)

(9) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(10) TRUE

(11) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
325_0_createList_LE(0) → 333_0_createList_Return

The integer pair graph contains the following rules and edges:
(1): COND_325_0_CREATELIST_LE(TRUE, x0[1]) → 325_0_CREATELIST_LE(x0[1] + -1)


The set Q consists of the following terms:
325_0_createList_LE(0)

(12) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(13) TRUE

(14) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:
none


R is empty.

The integer pair graph contains the following rules and edges:
(0): 1055_1_MAIN_INVOKEMETHOD(1055_0_isCyclic_NULL(java.lang.Object(ObjectList(x0[0])), java.lang.Object(ObjectList(java.lang.Object(ObjectList(java.lang.Object(x1[0])))))), java.lang.Object(x2[0])) → 1055_1_MAIN_INVOKEMETHOD(1055_0_isCyclic_NULL(x0[0], java.lang.Object(x1[0])), java.lang.Object(x2[0]))
(1): 1055_1_MAIN_INVOKEMETHOD(1055_0_isCyclic_NULL(java.lang.Object(ObjectList(x0[1])), java.lang.Object(ObjectList(java.lang.Object(ObjectList(java.lang.Object(x1[1])))))), java.lang.Object(ObjectList(x0[1]))) → 1055_1_MAIN_INVOKEMETHOD(1055_0_isCyclic_NULL(x0[1], java.lang.Object(x1[1])), java.lang.Object(ObjectList(x0[1])))

(0) -> (0), if ((1055_0_isCyclic_NULL(x0[0], java.lang.Object(x1[0])) →* 1055_0_isCyclic_NULL(java.lang.Object(ObjectList(x0[0]')), java.lang.Object(ObjectList(java.lang.Object(ObjectList(java.lang.Object(x1[0]')))))))∧(java.lang.Object(x2[0]) →* java.lang.Object(x2[0]')))


(0) -> (1), if ((1055_0_isCyclic_NULL(x0[0], java.lang.Object(x1[0])) →* 1055_0_isCyclic_NULL(java.lang.Object(ObjectList(x0[1])), java.lang.Object(ObjectList(java.lang.Object(ObjectList(java.lang.Object(x1[1])))))))∧(java.lang.Object(x2[0]) →* java.lang.Object(ObjectList(x0[1]))))


(1) -> (0), if ((1055_0_isCyclic_NULL(x0[1], java.lang.Object(x1[1])) →* 1055_0_isCyclic_NULL(java.lang.Object(ObjectList(x0[0])), java.lang.Object(ObjectList(java.lang.Object(ObjectList(java.lang.Object(x1[0])))))))∧(java.lang.Object(ObjectList(x0[1])) →* java.lang.Object(x2[0])))


(1) -> (1), if ((1055_0_isCyclic_NULL(x0[1], java.lang.Object(x1[1])) →* 1055_0_isCyclic_NULL(java.lang.Object(ObjectList(x0[1]')), java.lang.Object(ObjectList(java.lang.Object(ObjectList(java.lang.Object(x1[1]')))))))∧(java.lang.Object(ObjectList(x0[1])) →* java.lang.Object(ObjectList(x0[1]'))))



The set Q is empty.

(15) IDPtoQDPProof (SOUND transformation)

Represented integers and predefined function symbols by Terms

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

1055_1_MAIN_INVOKEMETHOD(1055_0_isCyclic_NULL(java.lang.Object(ObjectList(x0[0])), java.lang.Object(ObjectList(java.lang.Object(ObjectList(java.lang.Object(x1[0])))))), java.lang.Object(x2[0])) → 1055_1_MAIN_INVOKEMETHOD(1055_0_isCyclic_NULL(x0[0], java.lang.Object(x1[0])), java.lang.Object(x2[0]))
1055_1_MAIN_INVOKEMETHOD(1055_0_isCyclic_NULL(java.lang.Object(ObjectList(x0[1])), java.lang.Object(ObjectList(java.lang.Object(ObjectList(java.lang.Object(x1[1])))))), java.lang.Object(ObjectList(x0[1]))) → 1055_1_MAIN_INVOKEMETHOD(1055_0_isCyclic_NULL(x0[1], java.lang.Object(x1[1])), java.lang.Object(ObjectList(x0[1])))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

1055_1_MAIN_INVOKEMETHOD(1055_0_isCyclic_NULL(java.lang.Object(ObjectList(x0[0])), java.lang.Object(ObjectList(java.lang.Object(ObjectList(java.lang.Object(x1[0])))))), java.lang.Object(x2[0])) → 1055_1_MAIN_INVOKEMETHOD(1055_0_isCyclic_NULL(x0[0], java.lang.Object(x1[0])), java.lang.Object(x2[0]))
1055_1_MAIN_INVOKEMETHOD(1055_0_isCyclic_NULL(java.lang.Object(ObjectList(x0[1])), java.lang.Object(ObjectList(java.lang.Object(ObjectList(java.lang.Object(x1[1])))))), java.lang.Object(ObjectList(x0[1]))) → 1055_1_MAIN_INVOKEMETHOD(1055_0_isCyclic_NULL(x0[1], java.lang.Object(x1[1])), java.lang.Object(ObjectList(x0[1])))


Used ordering: Polynomial interpretation [POLO]:

POL(1055_0_isCyclic_NULL(x1, x2)) = x1 + x2   
POL(1055_1_MAIN_INVOKEMETHOD(x1, x2)) = x1 + x2   
POL(ObjectList(x1)) = 1 + 2·x1   
POL(java.lang.Object(x1)) = x1   

(18) Obligation:

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(20) YES